colour_checker_detection.detection.sample_colour_checker#
- colour_checker_detection.detection.sample_colour_checker(image: ArrayLike, quadrilateral, rectangle, samples=32, **kwargs) DataDetectionColourChecker [source]#
Sample the colour checker using the given source quadrilateral, i.e., detected colour checker in the image, and the given target rectangle.
- Parameters:
image (ArrayLike) – Image to sample from.
quadrilateral – Source quadrilateral where the colour checker has been detected.
rectangle – Target rectangle to warp the detected source quadrilateral onto.
samples – Sample count to use to sample the swatches colours. The effective sample count is \(samples^2\).
reference_values – Reference values for the colour checker of interest.
swatches_horizontal – Colour checker swatches horizontal columns count.
swatches_vertical – Colour checker swatches vertical row count.
transform – Transform to apply to the colour checker image post-detection.
working_width – Width the input image is resized to for detection.
working_height – Height the input image is resized to for detection.
- Returns:
Sampling process data.
- Return type:
colour_checker.DataDetectionColourChecker
References
[Dal24]
Examples
>>> import os >>> from colour import read_image >>> from colour_checker_detection import ROOT_RESOURCES_TESTS >>> path = os.path.join( ... ROOT_RESOURCES_TESTS, ... "colour_checker_detection", ... "detection", ... "IMG_1967.png", ... ) >>> image = read_image(path) >>> quadrilateral = np.array([[358, 691], [373, 219], [1086, 242], [1071, 713]]) >>> rectangle = np.array([[1440, 0], [1440, 960], [0, 960], [0, 0]]) >>> colour_checkers_data = sample_colour_checker(image, quadrilateral, rectangle) >>> colour_checkers_data.swatch_colours array([[ 0.75710917, 0.6763046 , 0.47606474], [ 0.25871587, 0.21974973, 0.16204563], [ 0.15012611, 0.11881837, 0.07829906], [ 0.14475887, 0.11828972, 0.0747117 ], [ 0.15182742, 0.12059662, 0.07984065], [ 0.15811475, 0.12584405, 0.07951307], [ 0.9996331 , 0.827563 , 0.5362377 ], [ 0.2615244 , 0.22938406, 0.16862768], [ 0.1580963 , 0.11951645, 0.0775518 ], [ 0.16762769, 0.13303326, 0.08851139], [ 0.17338796, 0.14148802, 0.08979498], [ 0.17304046, 0.1419515 , 0.09080467], [ 1. , 0.9890205 , 0.6780832 ], [ 0.25435534, 0.2206379 , 0.1569271 ], [ 0.15027192, 0.12475526, 0.0784394 ], [ 0.3458355 , 0.21429974, 0.1121798 ], [ 0.36254194, 0.2259509 , 0.11665937], [ 0.62459683, 0.39099 , 0.24112946], [ 0.97804743, 1. , 0.86419195], [ 0.25577253, 0.22349517, 0.1584489 ], [ 0.1595923 , 0.12591116, 0.08147947], [ 0.35486832, 0.21910854, 0.11063413], [ 0.3630804 , 0.22740598, 0.12138989], [ 0.62340593, 0.39334935, 0.24371558]]...) >>> colour_checkers_data.swatch_masks.shape (24, 4) >>> colour_checkers_data.colour_checker.shape (960, 1440, 3)